首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   24篇
  国内免费   3篇
  2022年   1篇
  2021年   6篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   8篇
  2015年   12篇
  2014年   12篇
  2013年   7篇
  2012年   16篇
  2011年   18篇
  2010年   14篇
  2009年   15篇
  2008年   12篇
  2007年   12篇
  2006年   6篇
  2005年   5篇
  2004年   10篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   8篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1974年   7篇
  1973年   2篇
  1972年   1篇
  1961年   1篇
排序方式: 共有251条查询结果,搜索用时 62 毫秒
51.
52.
53.
54.

Background

Methionine, an essential amino acid, is required for protein synthesis and normal cell metabolism. The transmethylation pathway and methionine salvage pathway (MTA cycle) are two major pathways regulating methionine metabolism. Recently, methionine has been reported to play a key role in Drosophila fecundity.

Results

Here, we revealed that the MTA cycle plays a crucial role in Drosophila fecundity using the mutant of aci-reductone dioxygenase 1 (DADI1), an enzyme in the MTA cycle. In dietary restriction condition, the egg production of adi1 mutant flies was reduced compared to that of control flies. This fecundity defect in mutant flies was rescued by reintroduction of Dadi1 gene. Moreover, a functional homolog of human ADI1 also recovered the reproduction defect, in which the enzymatic activity of human ADI1 is required for normal fecundity. Importantly, methionine supply rescued the fecundity defect in Dadi1 mutant flies. The detailed analysis of Dadi1 mutant ovaries revealed a dramatic change in the levels of methionine metabolism. In addition, we found that three compounds namely, methionine, SAM and Methionine sulfoxide, respectively, may be required for normal fecundity.

Conclusions

In summary, these results suggest that ADI1, an MTA cycle enzyme, affects fly fecundity through the regulation of methionine metabolism.  相似文献   
55.
Polyploidization events are frequent among flowering plants, and the duplicate genes produced via such events contribute significantly to plant evolution. We sequenced the genome of wild radish (Raphanus raphanistrum), a Brassicaceae species that experienced a whole-genome triplication event prior to diverging from Brassica rapa. Despite substantial gene gains in these two species compared with Arabidopsis thaliana and Arabidopsis lyrata, ∼70% of the orthologous groups experienced gene losses in R. raphanistrum and B. rapa, with most of the losses occurring prior to their divergence. The retained duplicates show substantial divergence in sequence and expression. Based on comparison of A. thaliana and R. raphanistrum ortholog floral expression levels, retained radish duplicates diverged primarily via maintenance of ancestral expression level in one copy and reduction of expression level in others. In addition, retained duplicates differed significantly from genes that reverted to singleton state in function, sequence composition, expression patterns, network connectivity, and rates of evolution. Using these properties, we established a statistical learning model for predicting whether a duplicate would be retained postpolyploidization. Overall, our study provides new insights into the processes of plant duplicate loss, retention, and functional divergence and highlights the need for further understanding factors controlling duplicate gene fate.  相似文献   
56.
L Li  J T Wong  S F Pang  S Y Shiu 《Life sciences》1999,65(10):1067-1076
Stimulation of rat epididymal epithelial cell proliferation by melatonin was demonstrated by thymidine incorporation and flow cytometric analyses. The stimulatory effect of melatonin was dependent on the hormone concentration and the duration of cell exposure to the hormone. Maximal stimulation of [3H]thymidine incorporation into epididymal epithelial cells by melatonin was observed at 1 x 10(-9) M 5alpha-dihydrotestosterone in medium, while lower or higher concentrations of androgen attenuated the stimulatory effect of melatonin. Interestingly, a nuclear melatonin receptor agonist (1-[3-allyl-4-oxothiazolidine-2-ylidene]-4-methyl-thiosemi-carb azone, CGP 52608) induced opposite effect on epithelial cell proliferation to that produced by melatonin. Our data suggest that melatonin-induced stimulation of rat epididymal epithelial cell proliferation is not likely to be mediated by nuclear receptor. Furthermore, sequential changes of cell cycle distribution with melatonin treatment also supports a stimulatory action of melatonin on epididymal epithelial cell proliferation.  相似文献   
57.
Consumption of fructose has been linked to the development of metabolic syndrome, whereas the cardiomyopathic changes and cardiac apoptosis of dietary high‐fructose intake have not yet been clarified. The purpose of this study was to evaluate the effects of high‐fructose on cardiac apoptotic and survival pathways. Thirty‐two Wistar rats were randomly divided into a control group (CON), which received a standard chow diet, and a fructose‐induced metabolic syndrome group (FIMS), which received a 50% fructose‐content diet for 13 weeks. Histopathological analysis, TUNEL assays and Western blotting were performed on the excised hearts from both groups. The blood pressure, glucose, insulin, triglyceride and cholesterol levels were significantly increased in the FIMS group, compared with the CON group. The abnormal myocardial architecture, enlarged interstitial space and increased cardiac TUNEL‐positive apoptotic cells were observed in the FIMS group. The TNF‐α, TNF receptor 1, Fas ligand, Fas receptor, FADD, and activated caspase‐3 and 8 protein levels (Fas pathway) and the Bax, Bak, Bax/Bcl‐2, Bak/Bcl‐xL, cytosolic cytochrome c, and activated caspase‐3 and nine protein levels (mitochondria pathway) were increased in the FIMS group compared with those in the CON group. The IGFI, IGFI‐R, p‐PI3K, p‐Akt, Bcl‐2 and Bcl‐xL protein levels (survival pathway) were all significantly decreased in the FIMS group compared with those in the CON group. High‐fructose intake elevated blood pressure and glucose levels; moreover, high‐fructose diet activated cardiac Fas‐dependent and mitochondria‐dependent apoptotic pathways and suppressed the survival pathway, which might provide one possible mechanism for developing heart failure in patients with metabolic syndrome. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
58.
The Aschelminthes is a collection of at least eight animal phyla, historically grouped together because the absence of a true body cavity was perceived as a pseudocoelom. Analyses of 18S rRNA sequences from six Aschelminth phyla (including four previously unpublished sequences) support polyphyly for the Aschelminthes. At least three distinct groups of Aschelminthes were detected: the Priapulida among the protostomes, the Rotifera-Acanthocephala as a sister group to the protostomes, and the Nematoda as a basal group to the triploblastic Eumetazoa.   相似文献   
59.
The fetal globin genes G gamma and A gamma from one chromosome of a chimpanzee (Pan troglodytes) were sequenced and found to be closely similar to the corresponding genes of man and the gorilla. These genes contain identical promoter and termination signals and have exons 1 and 2 separated by the conserved short intron 1 (122 bp) and exons 2 and 3 separated by the more rapidly evolving, larger intron 2 (893 bp and 887 bp in chimpanzee G gamma and A gamma, respectively). Each intron 2 has a stretch of simple sequence DNA (TG)n serving possibly as a "hot spot" for recombination. The two chimpanzee genes encode polypeptide chains that differ only at position 136 (glycine in G gamma and alanine in A gamma) and that are identical to the corresponding human chains, which have aspartic acid at position 73 and lysine at 104 in contrast to glycine and arginine at these respective positions of the gorilla A gamma chain. Phylogenetic analysis by the parsimony method revealed four silent (synonymous) base substitutions in evolutionary descent of the chimpanzee G gamma and A gamma codons and none in the human and gorilla codons. These Homininae (Pan, Homo, Gorilla) coding sequences evolved at one-tenth the average mammalian rate for nonsynonymous and one-fourth that for synonymous substitutions. Three sequence regions that were affected by gene conversions between chimpanzee G gamma and A gamma loci were identified: one extended 3' of the hot spot with G gamma replaced by the A gamma sequence, another extended 5' of the hot spot with A gamma replaced by G gamma, and the third conversion extended from the 5' flanking to the 5' end of intron 2, with G gamma replaced here by the A gamma sequence. A conversion similar to this third one has occurred independently in the descent of the gorilla genes. The four previously identified conversions, labeled C1-C4 (Scott et al. 1984), were substantiated with the addition of the chimpanzee genes to our analysis (C1 being shared by all three hominines and C2, C3, and C4 being found only in humans). Thus, the fetal genes from all three of these hominine species have been active in gene conversions during the descent of each species.   相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号